Marinka Zitnik

Fusing bits and DNA

  • Increase font size
  • Default font size
  • Decrease font size
Home

ACM XRDS: The Infinite Mixtures of Food Products

The Fall issue of ACM XRDS is here! In this issue of XRDS, we take a closer look at the marriage of physics and computer science through quantum computing. Quantum computing is a model of computation that breaks with the tradition of digital computers surround us. The issue covers recent advances in the field of quantum computing, such as computer simulation, complexity theory, simulated annealing and machine learning, as well as an in-depth profile of David Deutsch who pioneered the field of quantum computation.

My department contributed a column on the infinite mixture models applied to the problem of clustering food products. Infinite mixture models are useful because they do not impose any a priori bound on the number of clusters in the data. This is in contrast with finite mixture models, which assume a finite and fixed number of clusters that have to be specified before the analysis is started. The column describes infinite mixture models through a generative story and then uses Gibbs sampling to cluster the food facts. It can be seen that the number of clusters detected by the model varies as we feed in more food products. As expected, the model discovers more clusters as more food products arrive. Additionally, results show that detected food clusters have distinct nutritional profiles revealing interesting nutrition patterns.