Marinka Zitnik

Fusing bits and DNA

  • Increase font size
  • Default font size
  • Decrease font size
Home

Understanding Protein Functions in Different Biological Contexts

Our paper on predicting multicellular function through multi-layer tissue networks is published in Bioinformatics and is included in the proceedings of ISMB/ECCB 2017, a premier conference in bioinformatics and computational biology.

Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet surprisingly little is known about protein functions in different biological contexts, and prediction of tissue-specific function remains a critical challenge in biomedicine.

Our approach OhmNet represents a network-based platform that shifts protein function prediction from flat networks to multiscale models able to predict a range of phenotypes spanning cellular systems.

OhmNet predicts tissue-specific protein functions by representing tissue organization with a rich multiscale tissue hierarchy and by modeling proteins through neural embedding-based representation of a multi-layer network. For the first time, we can systematically pinpoint tissue-specific functions of proteins across more than 100 human tissues. OhmNet accurately predicts protein functions, and also generates actionable hypotheses about protein actions specific to a given biological context.